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Abstract

A low-AC loss Rare-earth barium copper oxide (REBCO) cable, based on the VIPER cable
technology has been developed by commonwealth fusion systems for use in high-field, compact
tokamaks. The new cable is composed of partitioned and transposed copper ‘petals’ shaped to fit
together in a circular pattern with each petal containing a REBCO tape stack and insulated from
each other to reduce AC losses. A stainless-steel jacket adds mechanical robustness—also
serving as a vessel for solder impregnation—while a tube runs through the middle for cooling
purposes. Additionally, fiber optic sensors are placed under the tape stacks for quench detection
(QD). To qualify this design, a series of experiments were conducted as part of the SPARC
tokamak central solenoid (CS) model coil program—to retire the risks associated with
full-scale, fast-ramping, high-flux high temperature superconductors CS and poloidal field

coils for tokamak fusion power plants and net-energy demonstrators. These risk-study and

* Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms
BV of the Creative Commons Attribution 4.0 licence. Any fur-
ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOIL. 1 © 2024 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/1361-6668/ad7efc
https://orcid.org/0000-0001-5017-5309
https://orcid.org/0000-0002-0053-2467
https://orcid.org/0000-0002-1690-0586
https://orcid.org/0009-0004-3352-2275
https://orcid.org/0009-0001-3158-9909
https://orcid.org/0009-0007-4223-5149
https://orcid.org/0000-0001-8469-780X
https://orcid.org/0000-0002-7857-3701
https://orcid.org/0000-0003-2302-9167
https://orcid.org/0000-0002-1236-4835
https://orcid.org/0000-0003-3011-9013
https://orcid.org/0009-0003-5127-2874
https://orcid.org/0009-0003-6522-9172
https://orcid.org/0000-0001-9165-0209
https://orcid.org/0000-0002-6607-6134
https://orcid.org/0009-0004-9206-2619
https://orcid.org/0000-0002-1110-0563
https://orcid.org/0009-0009-6791-0918
https://orcid.org/0000-0002-0898-5217
https://orcid.org/0000-0003-4906-6169
https://orcid.org/0000-0003-0219-9570
https://orcid.org/0000-0003-4841-5830
https://orcid.org/0000-0002-9060-2894
https://orcid.org/0000-0001-9955-1715
https://orcid.org/0000-0002-9450-7341
https://orcid.org/0000-0003-4871-4750
https://orcid.org/0009-0004-8159-699X
https://orcid.org/0000-0002-2090-1709
https://orcid.org/0000-0002-2110-6766
https://orcid.org/0000-0002-8753-1124
mailto:charlie@cfs.energy
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6668/ad7efc&domain=pdf&date_stamp=2024-10-4
https://creativecommons.org/licenses/by/4.0/

Supercond. Sci. Technol. 37 (2024) 115010

C Sanabria et al

risk-reduction experiments include (1) AC loss measurement and model validation in the range
of ~5 Ts™!, (2) an IxB electromagnetic (EM) loading of over 850 kN m~! at the cable level
and up to 300 kN m~! at the stack level, (3) a transverse compression resilience of over

350 MPa, (4) manufacturability at tokamak-relevant speeds and scales, (5) cable-to-cable joint
performance, (6) fiber optic-based QD speed, accuracy, and feasibility, and (7) overall winding
pack integration and magnet assembly. The result is a cable technology, now referred to as PIT

VIPER, with AC losses that measure fifteen times lower (at ~5 T s~!) than its predecessor
technology; a 2% or lower degradation of critical current (/) at high IxB EM loads; no
detectable /. degradation up to 600 MPa of transverse compression on the cable unit cell;
end-to-end magnet manufacturing, consistently producing /. values within 7% of the model
prediction; cable-to-cable joint resistances at 20 K on the order of ~15 n{2; and fast, functional

QD capabilities that do not involve voltage taps.

Keywords: fusion energy, tokamak, REBCO, cable, novel, pulsed magnets, compact

1. Introduction

The SPARC fusion device—currently under construction in
Devens, Massachusetts by Commonwealth Fusion Systems
(CFS) in collaboration with the MIT Plasma Science and
Fusion Center (PSFC)—is a high-field tokamak with ~20 T
on-coil [1], designed to operate at a performance range made
possible thanks to the continued improvement of Rare-earth
barium copper oxide (REBCO) high temperature supercon-
ductors (HTS) over the past two decades [2-5]. Similarly, the
significant scale-up in production of REBCO HTS tapes in
recent years [6—8], driven by fusion energy initiatives from
both the private sector and government agencies [9—11], has
made SPARC’s construction an attainable reality. This demon-
stration device is a significant milestone for CFS’ mission to
put fusion power on the grid by mid 2030s, using a serviceable
power plant called ARC [12].

A pulsed tokamak such as SPARC (and eventually ARC)
requires robust, high-field, and low-loss central solenoid (CS)
and poloidal Field (PF) coils to initiate, drive, and shape the
plasma. Such coils pose significant challenges at the con-
ductor level to balance the needs for low AC losses, high cur-
rent capacity, cooling capacity, mechanical robustness, and
quench detection (QD) capabilities. CFS and MIT in 2018—
2020 developed a REBCO cable technology called VIPER (an
acronym derived from its manufacturing steps [13])—based
on the twisted stack tape cable approach [14]—which was
studied in parallel with the No-Insulation No-Twist (NINT)
concept to consider its use in a high-field, steady-state demon-
stration magnet for fusion relevant toroidal field (TF) coils
[15-17]. This TF Model Coil project ultimately selected a
NINT architecture, but VIPER cables were still used for its
current feeder lines. VIPER may also be used for stellarator
coils [18], or any other steady-state magnet operating in the
20 K and 50 kA range. However, given that the VIPER cable
was not optimized for fast ramping applications such as the
CS or PF coils in a tokamak, CFS started in 2019 to develop
a low-AC loss REBCO cable for the CS and PF coils of
SPARC, aided by the Advanced Research Projects Agency-
Energy (ARPA-E) program of the US Department of Energy.

The goal of this ARPA-E grant was to retire the key risks asso-
ciated with pulsed magnets for high field tokamaks using a
2nd generation VIPER cable and to prove the technology read-
iness via a demonstration magnet; a central solenoid model
coil (CSMC). The purpose of this paper is to focus on this
emerging low-AC loss HTS technology, and the various exper-
iments designed to retire some of the key risks of SPARC CS
and PF coils.

SPARC was designed with an on-axis TF, By, of 12.2 T with
a peak field in the winding pack of 25 T. One of the unique fea-
tures of SPARC is the use of no-insulation technology for the
steady state magnets of the TF magnet system, a technology
that has been rigorously de-risked by CFS and the PSFC—at
SPARC-relevant scales—including the construction and test-
ing of a toroidal field model coil (TFMC) [15]. Other magnet
systems of a tokamak, such as the CS and PF coils are pulsed
magnets where a no-insulation approach is not practical due to
the fast charge rate required in these magnets during plasma
operation. A sketch highlighting the pulsed magnet systems
in SPARC is shown in figure 1 and the main parameters are
shown in table 1.

One of the most challenging features of these coils is the
high ramp-rates required to produce 42 Wb of magnetic flux in
a very small volume to initiate and drive the plasma current—
which can put the inner layer of the CS at field ramp rates as
high as 4.6 T s~!. To achieve this, it was necessary to redesign
the VIPER conductor to reduce its AC losses.

2. Reducing AC losses in VIPER cables

Changing the magnetic field in an electromagnet induces heat-
ing within the magnet; the different phenomena inducing heat-
ing are often lumped together in the term ‘AC losses’. For fast
ramping fields—e.g. a few available at: as in the SPARC and
ARC CS—the heating due to AC losses can be a major design
driver and limiter of magnet performance. These losses can
be grouped into three main groups: eddy current losses, coup-
ling losses, and hysteretic losses [19]. Given that hysteretic
losses are an inherent phenomena of the superconductor, it
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Figure 1. Conceptual renderings of SPARC. (a) overview, (b) central solenoid highlighted showing the module numbering from the
mid-plane outwards with upper/lower symmetry, and (c) poloidal field coils highlighted showing the module numbering (outwards-in) with

upper/lower symmetry. Image courtesy of Trey Henderson II1.

Table 1. Principal parameters and description of the CS and PF magnet systems of SPARC.

Parameter and units CS

PF

Three upper and three lower

Four upper and four lower coils,

Modules, description

coils, all independently powered.
Upper and lower are symmetric
(see figure 1)

all independently powered.
Upper and lower are symmetric
(see figure 1)

Module 1 inner radius/outer radius/height, m 0.445/0.695/0.984 0.79/1.05/0.269
Module 2 inner radius/outer radius/height, m 0.454/0.695/0.472 1.468/1.832/0.269
Module 3 inner radius/outer radius/height, m 0.454/0.695/0.472 2.494/2.806/0.215
Module 4 inner radius/outer radius/height, m — 3.72/3.98/0.323
Longest continuous cable length, m 163 241

Shortest continuous cable length, m 50.3 57.8

Total cable length required (full system), km 13.7 5.1

Peak stored energy (full system), MJ 886 409

Module 1 peak field, T 25 10.1

Module 2 peak field, T 18 7.6

Module 3 peak field, T 16 7.5

Module 4 peak field, T — 6.9

Engineering current density at peak field, A mm > 113 69

Peak ramp rate during plasma drive, T/s 4.6 1.8

Average winding pack stress expected at peak field (CS and —180° 150

TF on), MPa

Average winding pack stress expected (CS off, TF on), MPa —240° 0

Operating temperature range, K 15-30 15-30

Cooling, description 2 g 57! He gas at 20 bar 2.5 g s~! He gas at 20 bar
Winding style Layer Pancake

2 Even at peak field, the CS of SPARC finds itself under compression due to TF loads (more on section 5).

was deemed impractical for the SPARC project to attempt
to reduce hysteretic losses via modifications of the HTS tape
geometry [20-22], provided the schedule constraints and the
cost & scale needs for CFS’ mission. Therefore, it was decided
to use 4 mm wide tape without any hysteretic loss mitigation
strategies since the hysteretic contribution calculated from lit-
erature values [23, 24] was deemed acceptable compared to
eddy and coupling losses of VIPER. Another design constraint
that affects the ability to reduce AC losses has to do with the
principle of a soldered twisted stack which is responsible for
VIPER’s success [15]. Therefore, any new cable designs must
remain a soldered twisted-stack tape conductor to obtain sim-
ilar performance metrics and must use 4 mm-wide tapes for
scalability. These constraints leave us with one main lever to

reduce AC losses: partitioning the copper to minimize eddy
currents. This design change (a partitioned former) is now dif-
ferentiated by a simple acronym added to the original name:
now dubbed PIT VIPER, or, partitionally insulated and trans-
posed VIPER cable, proposed in late 2019 [25]. The main
change is the addition of electrical insulation on all faces of
the former ‘petals’ except those facing the HTS tape-stack (see
figure 2). Just like VIPER, it can be made of virtually any
number of stacks with as many HTS tapes per stack as the
copper former dimension allows (roughly between 60 and 100
HTS tapes per stack depending on the tape thickness). A cross
section of the PIT VIPER cable is shown in figure 2. A similar
concept (SECAS cable [26]) has recently been proposed, albeit
with significant manufacturing and operational differences.
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Figure 2. (a) cross section of a PIT VIPER cable with a square
jacket and a stainless-steel cooling tube. (b) and (c) planar and axial
arrow plots of eddy current patterns generated in VIPER. (d) and (e)
planar and axial arrow plots of eddy current patterns generated in
PIT VIPER under a uniform ramping magnetic field. Current arrows
are modeled using COMSOL multiphysics.

To qualify PIT VIPER for SPARC use, several risks must
be retired in addition to what was done for VIPER:

e Risk 1: the high AC losses observed in most REBCO
conductors [23, 24, 27, 28] causes localized overheating and
quenches the magnets during operation.

e Risk 2: the high IxB load acting on a partitioned cable causes
damage to HTS and reduces performance past operational
1. limits. This risk has proven very challenging for other
REBCO based cables [29, 30] proposed for fusion devices.

e Risk 3: high compressive loads on the CS cause irrevers-
ible (plastic) structural damage or component failure to the

CS (e.g. HTS, fiber optics, or insulation failure). This com-
pressive load is a result of the enormous centering forces
that attract all TF coils to the center of the tokamak. In
SPARGC, this load is supported at the CS-TF interface. Such
a design is referred to as a ‘bucked’ tokamak which puts
the CS in compression—as opposed to a ‘wedged’ tokamak
(e.g. ITER) in which the force is reacted at the TF-TF inter-
face and the CS is self-supporting.

e Risk 4: manufacturability of long lengths. There are many
REBCO cable technologies that have not moved past their
conceptual stages [21, 31, 32].

e Risk 5: high joint resistances or high joint AC losses cause
premature quenches during operation.

e Risk 6: QD system is not robust enough to prevent coil dam-
age during quench events, given the slow quench propaga-
tion velocity of HTS conductors [33].

e Risk 7: integration and testing of a fully manufactured mag-
net. This encompasses many risks which are inherent to
every magnet system such as insulation defects [34], unex-
pected heat loads [35], weldment issues [36], quench protec-
tion failures [37], lead/joint connection issues [38], operator
error [39, 40], etc.

Over the next few sections of this manuscript, we will visit the
R&D designed to address each risk, their results, and follow-
up requirements (if any).

3. Risk 1: high AC loss observed in most REBCO
conductors to date

AC losses in superconductors manifest themselves in a wide
range of intensities across different regimes and configurations
[19]. While modeling is a critical tool in assessing the AC
losses of a superconducting cable design, it is hard to capture
all the details of the physics involved. Experiments are neces-
sary to validate model results. This has led to practical char-
acterization methods via sinusoidal field fluctuations across a
range of frequencies (with a limited amplitude) at different
background fields [41]—often done with and without current
to understand the effects of transport current on the losses.
Such experiments require well-established wire/cable geomet-
ries and a significant characterization campaign at all stages
and operating regimes of the conductor.

At the time of the PIT VIPER conception (late 2019)
and given project schedule constraints (four years to build a
demonstration magnet), it was not feasible to fully charac-
terize PIT VIPER cables comprehensively in a matter of a
few months, since it would have required several meters of
cable and a rigorous testing campaign at a magnet such as
SULTAN. Even if such a campaign were launched, it would
have been limited by low field sweep amplitudes (<1 Ts~!in
practice) and currents below the full capacity of PIT VIPER
[42]. Instead, our initial experiments focused on proof-of-
concept by measuring the losses in short samples without
transport current (i.e. not electrically connected to the magnet
producing the background field). The losses were measured
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Figure 3. Experimental setup and sample position with respect to
the dipole common coil at BNL. The stainless-steel vacuum vessels
(insulating the samples) are not shown.

via calorimetry on 280 mm-long VIPER and PIT VIPER
cable sections having four full-HTS stacks (with a twist pitch
of 200 mm) under ramping magnetic fields induced by the
Dipole Common Coil at the Brookhaven National Laboratory
(BNL) [43], see figure 3. All dimensions and components are
identical in these two samples except the partitions of the PIT
VIPER cables. The samples were fully encased in stainless-
steel vacuum vessels, insulated (electrically and thermally)
at their contact points using G-10 supports. Three cernox
sensors per sample were anchored to exposed sections of cop-
per former along the length and their wires routed (in vacuum)
to room temperature via Klein Flansche feedthroughs with
multi-pin D-sub connectors. The experiment includes linear
ramps between 0.2 T s~! and 0.9 T s~' and magnet fast-
discharges (of the common coil) which induce field ramp rates
on the samples of up to —30 T s~!. During the ramps and dis-
charges, the temperature rise was measured using three cernox
sensors along the length to assess the AC losses of each run via
calorimetry. The magnet was energized or de-energized with
the parameters shown in table 2 and figure 4. A typical run and
the evolution of field and temperature are shown in figure 5
The heat generated on the sample is calculated using the
instantaneous heat capacity, the sample mass, and the change
in temperature measured. The three cernox sensor values are
averaged to obtain the sample temperature. The recorded tem-
perature does not show any gradients higher than 1 K during
a particular run, and the temperature within the cable cross
section is assumed uniform. To illustrate the nature of the
losses observed, the heat traces for runs with low, positive
dB/dt are shown in figure 6. Itis evident that PIT VIPER shows
negligible changes in its loss profile with small changes in
dB/dt, while VIPER fluctuates much more drastically. Given
that eddy and coupling losses are strongly dependent on dB/dt
while hysteresis are B dependent, it is likely that at these low
ramp rates the losses in PIT VIPER are largely hysteretic in
nature while the losses in VIPER are dominated by eddy and
coupling currents. This nonlinear evolution of the heat genera-
tion observed for PIT VIPER in figure 6 further reinforces the
hysteretic-dominant hypothesis, given that hysteretic losses

Table 2. Peak field and target ramp rates generated by the common
coil magnet for the runs analyzed.

Run
number Description Peak field (T) Target dB/dt (T/s)
Run 1 Ramp 7.57 0.28
Run2  Ramp 2.76 0.38
Run3  Ramp 7.57 0.28
Run4  Ramp 7.57 —0.28
Run5  Ramp 2.38 0.38
Run6  Ramp 7.57 0.19
Run7  Fast dump 7.57 ~—30 (see figure 4(b))
Run8  Ramp 5.68 0.24
Run9  Fast dump 5.68 ~—09 (see figure 4(b))
Run 10 Ramp 2.37 0.56
Run 11 Ramp 5.68 0.19
Run 12 Fast dump 5.68 ~—18 (see figure 4(b))
Run 13 Ramp 3.79 —0.94
Run 14 Ramp 5.68 —0.94
Run 15 Ramp & quench 7.57 ~—2.7 (see figure 4(a))
a)
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ES
34
“3
2
1
o] T 1
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Figure 4. Field as a function of time for the runs analyzed (a) linear
ramps (b) magnet quenches.
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Figure 5. Field and sample temperature traces for (a) Run 1 at
0.28 Ts~! and (b) Run 14 at —0.94 T s~!. The drop in temperature
observed in Run 1 after the run is complete is due to an increase in
pressure (accidental helium leak) in the sample vessels during this
run.

are dependent on B3 below a certain penetration field, while
linear above it—putting the penetration field for twisted tape
stacks somewhere between 1 T and 2 T, a middle ground from
those measured in [23] and [44].

Using the rate of change in temperature (and therefore in
heat generated), the instantaneous power in W/m can be cal-
culated and plotted as a function of dB/dt as shown in figure 7.
The trend shown (a simple exponential fit in log scale) reveals
a significant reduction in losses across a wide variety of ramp
rates for the PIT VIPER sample, which corresponds to a reduc-
tion of roughly 15 times at ~5 T s,

COMSOL multiphysics models with reasonable experi-
mental agreement are shown in figure 8. These models are
currently ignoring hysteretic losses, and therefore the exact

a) ., [——Run1(0.287/s

40 1| —Runs(0.247/s

)
—e—Run 2 (0.38T/s)
)
)

3.0 4 ——Run 6(0.19T/s

Heat (J)

2.0 A
1.0 4
0.0 4 .
0 2 4 6 8
Field (T)
b)
30 2| —&—Run1(0.28T/s)
95 . —&—Run 2 (0.38T/s)
—+—Run 6 (0.19 T/s)
20 -
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® 15 i '
@
T
10
5
0 |
0 2 4 6 8
Field (T)

Figure 6. Heat generated at low, positive dB/dt runs for (a) the PIT
VIPER sample and (b) the VIPER sample; note the difference in
vertical scales and lower heating in the PIT VIPER sample.
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Figure 7. Peak losses in W/m for all the runs as a function of
ramp-rate for both VIPER and PIT VIPER samples.
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after the run is complete is due to poor vacuum during that run, resulting in higher convection to the he bath outside the sample vacuum
vessels. The cooling power as a function of temperature for Run 1 was derived from the temperature traces and added to the model.
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temperature traces are much more difficult to capture for low
dB/dt runs. Nonetheless, at the most relevant ramp-rate values
(>1 T s™'), these models still provide very good estimates
of the total losses. Hysteretic models and higher field meas-
urements are important follow-up experiments currently under
development.

The initial approximation of these losses in a fast-
turnaround experiment (conceived in July 2020 and results
obtained four months later), combined with the validation of
models at high dB/dt, provided the required information to
proceed with the de-risking of PIT VIPER for SPARC (and
even ARC) as shown below, without having to increase the
cooling scheme, make significant cable design changes, or
modify the tape-stack configuration. Henceforth, the design of
the PIT VIPER cable-in-conduit conductor (CICC) was locked
in. Twist pitch, tape stack size, cooling tube dimensions, and
copper fraction were fixed. Only the number of petals (four or
five) and/or the number of HTS tapes within that petal were
altered to increase or decrease the transport current by adding
or removing filler or ‘dummy’ tapes made of stainless steel.
This ability to change critical current of a particular sample
by modifying the number of HTS tapes and replacing a mech-
anically equivalent filler tape, allowed us to tailor the cable
designs for a particular risk-retirement experiment—without
having to utilize all the HTS real estate.

To predict critical current density of the cables, we used
the electrical models described in appendix A combined with
the tape data up to 20 T acquired using the methods outlined
in appendix B. Such models seem to predict the cable per-
formance with reasonable margin of error (likely coming from
manufacturing processes as it will be discussed in section 6
of this manuscript). Mechanically, we have assumed that the
petals act independently under lorentz loads, an assumption
that has proven reasonable on these and other experiments
of soldered tape stacks inside a copper former [13, 18, 45].
Under external loads, the monolithic nature of the soldered
cable also appears to generate similar stress-strain conditions
within the tape stack with either four or five-petal cables (see
appendix C). Occasionally, for ease of manufacturing and in
cases where external load was not applied, the jacket (or con-
duit) shape was altered from circle-in-square to a round jacket.
Hence, the experiments presented in this manuscript have just
enough HTS tapes to obtain the necessary data to retire each
risk; be it 1. degradation due to electromagnetic (EM) loads,
external loads, manufacturing processes, etc., or to reach a par-
ticular operational state, such as is required for QD.

4. Risk 2: high IxB loading of a high field magnet

At peak loading conditions of SPARC CS, 50 kA and 25 T,
the transverse IxB load at the innermost layer (which has a
5-petal cable) reaches 250 kN m~! per stack. The perform-
ance of VIPER cables had already been qualified in 2019 to
similar loads with acceptably low degradation of I., in the
order of a few percent [13]. These experiments use a single
HTS petal under the assumption that the petals are sufficiently

T., measured at 10.8 T and 25 kA
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Figure 9. T evolution of a PIT VIPER sample having a single
tape-stack of HTS loaded at 300 kN m~" for 2000 cycles showing
very little performance degradation which should be equivalent
during SPARC conditions at higher temperatures with higher tape
counts.

independent to retire the internal (IxB) forces of the cable
(a reasonable assumption given the monolithic nature of the
cable and as long as there is no bending, as is required for
SULTAN tests). However, the partitions of PIT VIPER were
different enough structurally that a re-qualification was war-
ranted to retire the new IxB load risk and to confirm that the
petals are still independent. To do so, a three-meter-long PIT
VIPER sample with a single HTS tape stack (and filler non-
HTS tape stacks in the other petals) was tested at the SULTAN
facility [46]. The current sharing temperature, 7', evolution of
this sample under a stack-loading of 300 kN m~! (27.5 kA at
10.9 T) is shown in figure 9, exhibiting a negligible change
in T after 2000 EM cycles having a slight change during
the warmup-cooldown cycle. These results confirmed that PIT
VIPER does not have any disadvantages in its performance
compared to VIPER under relevant IxB loads.

The above-mentioned operational parameters of 50 kA,
20 K and 25 T of SPARC CS are expected to be achieved
with an Io,/I. of ~0.9 for a five-petal cable using the meth-
ods described in appendices A and B and using HTS tape
with J, (B, T, 6) performance already procured for the SPARC
project. Hence, this experiment solely focused on studying
the stack performance under a particular strain—generated by
300 kN m~! on a single stack. The results indicate that there
will be no degradation of performance under these loads.

5. Risk 3: high compressive loads from a bucked
design tokamak

The bucked design of SPARC, carrying the TF radial center-
ing loads in the CS, puts the CS winding pack under smeared
compressive loads of ~300 MPa when the TF is on and
the CS is off. This external load is counteracted when CS
is on, but the magnet remains in compression. Finite ele-
ment analysis (FEA) of PIT VIPER cables in the SPARC
CS under peak loading conditions indicate maximum strains
on the HTS of —0.4%, which exceeds most values tested in
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the literature on unsoldered tapes and cables [47-49], and
could surpass the irreversible strain limits of the HTS [50,
51]. Similarly, exceeded allowables are observed in FEA of
the winding pack on the turn insulation—a composite layer of
E-glass and Kapton having a thickness of 0.5 mm—reaching
a tensile strain as high as 5.4% through-thickness, 1% along
the glass layers, and shear strains of 4.6%. Two experiments
were designed to replicate the peak strain values mentioned
above but using a single transverse load at 77 K under liquid
nitrogen—allowing for an inexpensive and conservative initial
assessment of the risks under compressive loads.

5.1 HTS degradation under transverse compression

The 1st generation VIPER technology was heavily tested
under transverse IxB loading and axial tension simultaneously
at 10.9 T and below 30 K in 2019 [52], displaying a surpris-
ing resilience beyond the experimentally-observed irreversible
effects of HTS [50] and far beyond what other similar cable
technologies can achieve [29]. However, the loading of the
SPARC CS has a hoop compression (induced by the buck-
ing TF magnets) which produces a combination of longitud-
inal and transverse compression on the conductor. This is a
very different load case than that seen in most superconduct-
ing magnets, never tested in VIPER, and not something that
can be tested in a magnet facility with a limited bore size such
as SULTAN. To study the effects of this high compressive state
on PIT VIPER cables we have relied (so far) on purely trans-
verse loading at 77 K and self-field /. measurements. A 50 ton
hydraulic press was equipped with a ~2 m-long trough con-
taining liquid nitrogen within the press frame, insulated, and
adapted with a pusher capable of loading up to 450 MPa over
a cable length of 50 mm (or higher if the contact length is
reduced). Square-jacketed PIT VIPER samples with a single
HTS stack (and dummy tape stacks in the other petals) were
prepared and compressed with unconstrained sides for >100
cycles under a peak load of 400 MPa and a minimum load
of 200 MPa—with occasional unloaded states for /. measure-
ments. Three different samples with different orientations of
the tape stacks (within their 200 mm twist-pitch spiral) were
used at 0°, 45°, and 90° with respect to the force direction
as shown in figure 10(a). Voltage tap pairs with 200 mm spa-
cing were used to monitor voltage during /. curve measure-
ments done in the unloaded condition every few compression
cycles.

The results observed in figure 10 indicate no /. changes bey-
ond a few percent (measurement error) at 400 MPa for over
100 compressive cycles and an onset of irreversible degrada-
tion (>5%) is observed only above 650 MPa. CFS is presently
investigating the effects of a longitudinal compression com-
bined with transverse to further investigate the loading condi-
tions in SPARC with very encouraging results [45].

5.2. Insulation integrity under transverse compression

To investigate the effects on turn insulation under these
load conditions, an array of cables is necessary. Similar
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Figure 10. Transverse loading (a) orientations, (b) normalized

(77 K, self-field) I. evolution as a function of number of
compressive cycles, N, for all orientations cycling from 200 MPa to
400 MPa for each cycle and unloading completely every few cycles
for I. measurements, and (c) after cycling at 400 MPa was complete,
the 45° orientation sample /. was measured after loading and
unloading with increasing compression values up to 700 MPa. An
irreversible limit is not observed below 600 MPa. All 1.
measurements were done in the unloaded state.

experiments have been successfully carried out on arrays of
insulated ITER conduits—Iloaded at cryogenic temperatures
for tens of thousands of transverse compression cycles—with
the breakdown voltage measured at room temperature after
mechanical cycling (see [53, 54] for more details). The insu-
lation chosen for PIT VIPER cables is modeled after ITER’s
glass-Kapton wrapped tapes as described in [55] with only
slight modifications to reduce thickness. The same epoxy was
used as in [55]. Three identical arrays of PIT VIPER cables
were fabricated in a staggered pattern of alternating rows of
four and five conductors with turn insulation around every con-
ductor and two plies 0.2 mm-thick fiberglass between rows
representing layer insulation (see figure 11). These samples
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a)
_——— «— E-glass (0.127 mm-thick)
0.48 mm D — AN (plain weave)
T Cable jacket FPC Kapton (50.8 pm-thick)
Tape width: 38.1 mm + E-glass (0.127 mm-thick)
b)
260 MPa
1 mm-thick
SS plate G-10 fillers
«— Stainless steel

-0.05 0 0.05 0.1

Figure 11. (a) A sketch of a a cross section view (not to scale) along
the length of the conductor showing the design of the turn insulation
of SPARC CS and (b) configuration of the 4545 array test coupons.

were cycled for 70000 cycles at 260 MPa and 77 K. The
loading and the cycles were chosen for fatigue analysis using
methods in [56], which suggests a conservative approach using
more cycles, lower loading, and up to three samples for stat-
istical purposes. The results are shown in figure 12 where a
winding pack modulus of elasticity is approximated (after the
first settling cycle) at ~75 GPa. This is a value that should
be lower in real magnets, but is still much higher than that
found in insulated arrays of non-soldered CICCs like ITER
[53]. After 70 000 cycles at 260 MPa, all three samples were
hi-pot tested and passed above 10 kV with leak currents under
0.05 pA and breakdown voltages above 13 kV except for an
overloaded case discussed below. Values are shown in table 3.
These breakdown values exceed the ‘2x + 1’ criterion recom-
mended by ITER [57] of two times the maximum operating
voltage plus 1 kV, which for SPARC amounts to 1 kV and
3 kV for turn and layer insulation respectively.

Array 3 was further tested at 400 MPa for another 70 000
cycles. Photos of the samples after their compression cycles
are shown in figure 13 as well as the stress-strain curves of
the highly stressed sample showing significant plasticity and
an elastic modulus drop from 66.0 GPa to 62.3 GPa (average
measurement between 200 MPa and 300 MPa). This excessive
deformation resulted in an electrical short on one of the top
conductors (top left), with all other conductor pairs passing
their respective 1 kV and 3 kV criterion with acceptable leak
current values—albeit thirty times higher than those after
260 MPa.
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Figure 12. (a) Typical stress-strain curves of the units under test at
260 MPa (b) measured elastic modulus as a function of cycles.

This 400 MPa test was an attempt to understand edge
cases observed in our latest models of SPARC CS. However,
the level of plasticity obtained in pure transverse loading at
400 MPa is unlikely to be the same as in hoop loading of the
same peak stress values. A follow-up experiment will be done
with more accurate targets (below 400 MPa given that this tar-
get was a non-representative extreme) and including ground
insulation with a geometry representative of the SPARC CS
buffer region (i.e. the space between modules) to better under-
stand this risk and its likelihood.

6. Risk 4: manufacturability

Between 2020 and 2023, CFS has fabricated several PIT
VIPER samples of medium and long lengths to prove man-
ufacturability at relevant scales. The samples and their risk-
retirement purpose and outcomes are listed in table 4. Note
that the first 100 m-long proof-of-concept sample had a signi-
ficant underperformance, with an n-value below 10 and up to
23% lower I, than predicted in some turns. An investigation
revealed damage to the tapes during winding of this 100 m-
long single layer. This has been alleviated since, with sub-
sequent wound cable samples showing very good agreement
with the theoretical I, values and a very high n-value. The pre-
dicted cable I, values shown in table 4 are calculated using the
methods shown in appendices A and B.
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Table 3. Leakage currents and breakdown voltages across neighboring conductors of the three identical arrays tested.

Target Highest leakage Highest leakage
Array compression current reading current reading Average breakdown Lowest breakdown
number (MPa) at3kV (nA) at 10 kV (uA) voltage (kV) voltage (kV)
1 260 0.02 0.04 24.75 20
2 260 0.02 0.05 26.75 15
3 260 0.02 0.5 18.5 13
3 400 0.58* n/a 8.7% 5.1%

2 these values ignore the short observed at the top left conductor.

c) 450
400

350
300
250

200

Stress (MPa)

150

100

50

—Cycle 1

-==Cycle 2

= - Cycle 240
Cycle 10,000

E=66.0 GPa

0 0.002  0.004

0.006  0.008
Winding pack strain

0.01

0.012

0.014

Figure 13. (a) Array 1 after 260 MPa for 70 000 cycles. (b) Array 3 after 260 MPa for 70 000 cycles and 400 MPa for 70 000 cycles where
an electrical short on the top left conductor can be observed (c) stress-strain curves during compliance tests for array 3 loaded at 400 MPa.

The deformation went beyond the capabilities of the instrumentation after 10 000 cycles and therefore is not plotted.
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Table 4. PIT VIPER samples longer than two meters made to date.

Target Measured
self-field self-field
Date of # of HTS 77K 77K Measured

Sample  manufacture Jacket petals/total # I. £ 50 I. =50 n-value

length (m) completion geometry of petals (A) (A) (77 K) Purpose Outcome

15 May 2021 Round 0/4 N/A N/A N/A Proof of concept and Success
hot-spot detection

3 September 2021 ~ Round 1/4 4145 3720 22+3 Stack IxB load Success
qualification

3 September 2021 Round 4/4 6140 6450 18+ 3 High current hot-spot Success
detection

100 June 2022 Round 1/4 3540 2870 8+1 Cable manufacturing Damage root
qualification cause

identified

38.7 October 2022 Square 4/4 4550 4330 23+£3 Cable manufacturing 2nd  Success
qualification. Quench
studies, See section 8

40 February 2023 Square 4/4 9176 8754 29+3 See section 9 Success

39 April 2023 Square 4/4 9209 8592 27+3 See section 9 Success

43 March 2023 Square 4/4 9272 9049 33+£3 See section 9 Success

45 April 2023 Square 4/4 9157 8617 31+3  See section 9 Success

3 March 2023 Square 4/4 28930 not N/A Joint resistance below Success

measured 20K

2.8 July 2023 Square 1/5 3230 3260 20.8 £3 Characterization of solder Success
flowrates and times
representative of PF4

59.5 September 2023  Square 0/5 N/A N/A N/A PF style cable line Success
qualification

58.5 September 2023  Square 0/5 N/A N/A N/A PF style jacketing and Success
winding qualification

58.5 October 2023 Square 4/5 2767 2743 21 £2.5 PF performance Success
qualification

22 Exp. December Square 1/5 3287 TBD TBD PF-like solder flow TBD

2023 qualification

6.1 The solder process

As it has been discussed above, solder impregnation signific-
antly improves the electromechanical properties of a supercon-
ducting cable. Soldered cable concepts have been proposed
for fusion magnets in the past [58], however, this may not
be recommended for AC magnets in ramped tokamaks made
of low temperature superconductors (LTS) because the solder
impregnation removes the intimate contact between the super-
conductor and the supercritical helium which is one of the
main benefits of LTS CICC [59, 60]. The high temperature
margin offered by HTS allows for solder use within the con-
ductor, but the novelty of VIPER and PIT VIPER comes not
only from the use of solder for reinforcement, but from the use
of a vacuum-pressure impregnation (VPI) process which sig-
nificantly improves the properties of the fill [61]. The details
of this process are proprietary and therefore not disclosed in
this manuscript.

The VPI process itself can lead to imperfect fill depending
on the temperature profile and the flux used to remove oxides
and wet the cable surfaces prior to the VPI. Figure 14 shows
CT scans of a VIPER cable circa 2019 (top) and a PIT VIPER

cable circa 2022 (bottom) where the flux selection led to dif-
ferences in the void fraction. Another important consideration
for flux selection is the absence of halides, which are known to
cause significant stress corrosion in austenitic stainless-steels
over long periods of time [62, 63]—causing significant delays
of major projects [64].

A significant concern regarding this process is temperat-
ure. Exposing REBCO to high temperatures can cause oxy-
gen out-diffusion from grain boundaries, reducing its critical
current [65-67]. The flow of solder past the tape also erodes
the protective copper coating, which can expose the REBCO
to further damage [68, 69]. Dedicated tests are being conduc-
ted to retire the risks of solder degradation, where solder flow
comparable to the longest SPARC PF cables was optimized
to produce minimal /. degradation with encouraging results
(see table 4). In addition, it should be noted that the cables
used in IxB and compressive load tests (sections 4 and 5) were
deliberately exposed to flow amounts and times prototypical
of respective CS coils. This exposure is much longer than used
for original VIPER SULTAN tests and addresses the risk that
HTS tapes with coatings eroded by solder might have lower
load tolerance.
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Figure 14. CT scan showing isolated solder where some porosity is observed and a few large voids are highlighted with white arrows. Top:
a VIPER cable, circa 2019, using flux from manufacturer A. Bottom: a PIT VIPER cable, circa 2022, using flux manufacturer B.
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Figure 15. Basic concept of a PIT VIPER joint after the jacket is
removed at the joint region. Wide solid arrows depict the current
path; thin arrows show the compression.

7. Risk 5: joint performance

Due to the soldered nature of PIT VIPER cables, making a
sintered joint similar to those developed for ITER [70] is not
feasible. Even a butt joint [71] is challenging given that the
cooling tube is trapped inside a monolithic conductor, and
welding on its thin walls can easily develop helium leaks
inside this heavily loaded winding pack. For this reason, our
efforts have been focused solely on producing a PIT VIPER
lapped joint based on the same concept as VIPER [13],
with silver-plated surfaces and compressed indium wire—
similar to some joints qualified for ITER in [72]. There are
two competing design considerations related to cable joints
in SPARC CS and PF magnets, (1) a resistance lower than
20 n{?2 to reduce ohmic heating and (2) a small footprint
with segmented areas to reduce AC losses from changes in
magnetic flux. To achieve this in a winding pack as com-
pact as the SPARC CS, with the field direction perpendicu-
lar to the joint plane, it is necessary to break up the copper
pieces joining the two lapped cables and to limit the con-
tact areas to reduce large current loops within the joint. The
basic concept of the PIT VIPER joint is shown in figure 15
where the yellow arrows show the main low-resistance path
and therefore the discrete areas in which eddy currents could
develop. To prepare these joints, the stainless-steel jacket
of the fully-soldered cable must be removed in the jointing
section of each cable, and the cable surfaces sanded to expose
the copper former. Subsequent steps have been described
elsewhere [13].
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Figure 16. (a) SULTAN sample for PIT VIPER joint qualification
(b) measured resistance of the lapped joint in the HFZ at 50 kA,
10.9 T and 15 K as a function of EM cycles cycles.

To study the feasibility and performance of these joints
during and after EM cycling, three fully manufactured PIT
VIPER cables were made to act as the two legs of a SULTAN
sample (see figure 16). The setup consists of one three-
meter-long section jointed at the bottom to one of two smal-
ler sections having a lapped joint positioned to be aligned
with the high-field zone (HFZ) of the SULTAN magnet as
shown in figure 16(a). The bottom joint is outside of the
scope of this experiment and therefore was made with a sim-
ilar process to that described in [13]. The resistance evolu-
tion of this lapped PIT VIPER joint throughout an EM cyc-
ling campaign from zero to 80 kA at 10.9 T is shown in
figure 16(b). The resistance values were measured between
current pulses at a lower current (50 kA). Each 80 kA ramp
represents an EM loading of 872 kN m~! due to the back-
ground field of the SULTAN magnet. The setup and detailed
results of this test will be presented in a separate publication
[73].
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8. Risk 6: QD

There are many sources of EM noise inside a tokamak. Not
only are there various ramping magnets coupled to each other
during a plasma run, but the plasma current itself and eddy cur-
rents generated in the various supporting structures can add
to this high-noise environment. In LTS-based tokamaks, co-
wound voltage taps [74] and other noise cancellation tech-
niques such as central difference averaging [75] and magnet i-k
(MIK) [76] have proven effective in their suppression of this
EM noise with acceptable hold times [75, 77-79]. The chal-
lenge for HTS arises from the 10x slower quench propagation
velocity of REBCO [33] causing the quench zone to be orders
of magnitude shorter than in LTS and therefore the voltage
signal proportionately smaller. ITER conductors, for example,
are estimated to require three to four meters of quenched
length at 12 T, 40 kA, and 50 K for the voltage signal to rise
above the threshold level of 250 mV with a signal-to-noise
ratio (SNR) of 10 [77, 80], that is roughly 20 nQ2 cm~'. PIT
VIPER is estimated to have roughly 0.5 nQ2 cm~! under sim-
ilar conditions, which makes it unrealistic to detect voltages
in the level a few tens of millivolts using voltage tap-based
approaches in SPARC. Therefore, the chosen QD technology
for PIT VIPER and SPARC is based on fiber bragg grating
(FBG), which, despite its relative immaturity as a QD method,
has the significant advantage of being immune to EM noise.

In the past, we have developed experimental approaches
[81] that forgo the spatial resolution of discrete FBG peaks
and instead use a much higher density array producing a com-
plex spectrum. The detection mechanism, therefore, focuses
on identifying changes in the spectrum, instead of tracking
individual peak shifts as is often the case for FBG-based strain
sensors [82, 83]. The resulting figure of merit is produced by
signal-processing algorithms as a single, unitless value which
increases when changes in the fiber spectra are observed. This
is referred to as our algorithm response or the ‘quench sig-
nal’. To explore the signal shape and develop the algorithm
responses for a fully manufactured PIT VIPER cable, a 15-
meter-long test cable (see table 4) was made and instrumented.
Through this sample, improvements on the fiber location and
FBG wavelength and spacing were made—compared to that
used on the early VIPER prototypes [81]. The sample was
instrumented with one fiber per stack, with each fiber having
300 evenly distributed FBGs with wavelengths between 1510
and 1590 nm. Further details on fiber configuration are propri-
etary technology. This cable was tested in liquid nitrogen and
equipped with heaters at random locations along the length as
a proof-of-principle method despite not having any current or
HTS. The spectrum signal during firing of the heaters and their
processed values are shown in figure 17, where the processed
signal matches the temperature rise with very good SNR.

A much more rigorous and complex follow-up experi-
ment used a 38.7 m-long PIT VIPER cable tested at SPARC-
relevant current and temperatures. This 10-turn coil was
heavily instrumented—with more than 70 co-wound voltage
taps, more than 10 heaters, and up to 25 cernox temperat-
ure sensors—to understand quench dynamics and fiber optic
responses on fully-developed quench events and to fine-tune
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Figure 17. (a) Photo of the cartridge heaters and copper heating
block on a 15 meter-long PIT VIPER cable. (b) FBG spectral shape
changes observed in PIT VIPER cables tested in LN, with heaters
attached. (c) The quench detection algorithm responses during
heater triggers.

the algorithm responses for these operating currents and tem-
peratures. This cable underwent 70 quench events (with cur-
rents ranging between 28 and 43 kA and temperatures between
23 K and 30 K) in which the FBG fibers produced an EM
immune signal with very high SNR. The quenches were
induced using surface heaters on the cable. A voltage bridge
circuit across the coil was used as the primary QD method.
For each quench, the fiber optic signals were captured, post-
processed, and compared to the signal from arrays of voltage-
taps (spaced by ~5 cm) near the quench zone. A few examples
of these quench events and their algorithm responses are found
in figure 18, where voltage traces (captured by voltage tap
pairs close to the quench region) and the spectral change signal
(i.e. ‘quench signal’) respond similarly to the thermal runaway
triggered by a heater pulse at # = 0 lasting a few seconds. The
voltage increase from the quench events were closely matched
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Figure 18. (a) A 38.7 m-long PIT VIPER cable instrumented and
designed to understand quench dynamics and fiber optic responses
on fully-developed quench events. (b)—(d) the spectral change and
the voltage measured in the quench region for quenches at 37.4 kA,
35.7 kA, and 33.9 kA respectively. Voltage tap measurement is
limited to 0.5 mV by the DAQ.

Table 5. The SPARC central solenoid model coil operational

parameters.
Parameter Value
Inner radius 0.602 m
Outer radius 0.708 m
Height 0.348 m
Number of turns per layer 10
Number of layers 4
Petals per cable 4
Fibers per cable 4
HTS count per cable 136
Cable former diameter 18 mm
Jacket side dimension 23 mm
Turn insulation thickness 0.5 mm
Layer insulation thickness 0.4 mm
Operational temperature 18-25 K
Peak field 57T
Peak ramp rate (at discharge) ~—4Ts!
Peak ramp rate (linear) 037Ts™!
Inductance 2.982 mH
Iop/I at 50 kA (designed) 0.85
Stored magnetic energy 3.728 MJ

by the fiber response in all 70 quenches. It is important to high-
light that for all quenches (except for the last one), there were
no detectable changes in /. during operation and the /. values
measured had similar percentage deviation from predictions as
observed during our 77 K testing, see table 4. The last quench
was catastrophic and was a result of operator error (the wrong
setting was chosen for the QD voltage threshold). The details
of the test campaign of this 38.7 m-long PIT VIPER layer and
all its quench events are still being analyzed and will be part
of a future publication.

9. Risk 7: integration and testing

The fabrication of the SPARC CSMC encompasses a variety
of risks inherent to any first-of-a-kind magnet fabrication and
operation, such as cable damage during integration, insulation
defects, and/or operational issues. The operational parameters
of this coil are shown in table 5. Its peak field (5.7 T), despite
being lower than SPARC CS and PF, still matches their current
and temperature (which are the main sources of variability in
quench dynamics). As noted in table 5, the linear field ramp
rates are limited to 0.37 T s~!; this comes from limitations
of the test facility, which was designed for the SPARC TFMC
(a no-insulation magnet) [15]. However, using fast discharges
within the facility limitations, dB/dt values starting at —4 Ts ™!
can be obtained with a decay constant of 1.4 s. Additionally,
the facility has been equipped with fiber optic feedthroughs
and cables which were already tested for the test coil shown
in section 8. The operational stresses and strains are shown in
figure 19.

Despite the low operational voltages, the insulation in
CSMC is rated for SPARC CS operation which can be as
high as 10 kV to ground, 3 kV layer-to-layer, and 1 kV
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Figure 19. The SPARC central solenoid model coil (CSMC)
design. (a) 2D model of the epoxied winding pack hoop strain
during peak field. (b) von mises stresses of the CSMC on the
conductor jacket (not showing the stresses on the insulation). (c)
von-mises stresses of the CSMC on the ground insulation.

turn-to-turn. The ground insulation is composed of six lay-
ers glass-kapton-glass tape poloidally wrapped around the coil
with 50% overlap. Furthermore, CSMC uses ground insulation
‘feedthroughs’ for cooling tubes and fiber optics developed
and tested at CFS to up to 21 kV in Paschen conditions [84].
These components and their electrical isolation are an import-
ant focus for this coil fabrication and subsequent SPARC coils,

Table 6. The SPARC central solenoid model coil test objectives.

Category Test objectives during CSMC test campaign

Cable performance ~ Operate CSMC at 50 kA and 20 K without
generating a quench.

Obtain an /. (T) curve between 25 K and

45 K to compare with modeled predictions.
Measure joint resistances.

Measure the magnet AC losses ramps via
calorimetry during fast discharges

(—4 T s™") and linear ramps (~0.1 T s7h.
Subject the insulation to at least two thermal
cycles for a future room temp paschen test.
Measure the magnet’s radial and axial
modulus (as measured over the ground
insulation).

Obtain fiber cooldown data to confirm
models and understand any other sources of
attenuation.

Prediction of spectral changes after
cooldown and at specific current (magnet
strain) values.

Measure the fiber spectra during steady state
to understand FBG drift due to joint heating.
Capture fiber spectra during high strain
events.

Cable performance
Cable performance

Cable performance

Magnet-related

Magnet-related

Fiber spectra

Fiber spectra

Fiber spectra

Fiber spectra

given the high risk associated with paschen failures during
magnet commissioning and operation [84—86]. This coil was
tested in August 2024 as a stand-alone coil at the MIT test
facility [87] with flowing helium gas at 20 K or higher, and
currents up to 50 kA. The test objectives are outlined in table 6
and the test results will be published in a separate publication.

10. Conclusions

A novel superconducting cable technology based on REBCO
tape-stacks has been developed for pulsed magnets in compact
tokamaks operating up to 25 T at 20 K and having an engin-
eering critical current density in the range of ~100 A mm~2.
This CICC, called PIT VIPER, is composed of twisted cop-
per former ‘petals’ with stacks of ~90 REBCO tapes each.
Electrical insulation is applied between petals and a seam-
less tube through the middle for gaseous helium coolant. The
conduit is a seam-welded, high-strength austenitic stainless-
steel jacket that also serves as the vessel for a fabrication
step involving molten solder VPI of the cable—turning it into
a monolithic conductor. This cable technology can sustain
up to 600 MPa of transverse compression when applied to a
single cable without degradation of current transport proper-
ties (tested in liquid nitrogen). Similarly, negligible /. degrad-
ation or T changes were observed with up to 300 kN m~! of
IxB loading per stack (tested at the SULTAN magnet facil-
ity). Additionally, the lack of empty space within the con-
duit, with no incompressible media (except inside the cool-
ing tube), gives this CICC an exceptional winding-pack mod-
ulus (~70 GPa) which prevents high strain on the insula-
tion upon loading and preserves electrical integrity. The key
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feature of this novel technology are the segmented copper
petals, which reduce AC losses up to 15 times lower than
its predecessor technology and enables the operation of high-
field, pulsed, compact tokamaks like SPARC and the ARC
fusion pilot plant. To maintain the low AC-loss properties
in PIT VIPER-based magnets, joint length and surface con-
tact between cables is limited to avoid large current loops
within the joint. Nonetheless, a robust joint mechanism has
been developed which can have joint resistances in the range
of 15 n{? with excellent EM loading resilience. Finally, the
fiber optic-based QD system shows encouraging results at rel-
evant operational currents and temperatures. As part of the
risk-retirement campaign, a model coil operating at 50 kA
with a peak field of 5.7 T and a ramp rate discharge starting
at —4 T s~! was tested in August 2024—as a comprehensive
technology-readiness test in preparation for the CS and PF coil
fabrication for SPARC.

This new cable technology was designed for mass produc-
tion and is not limited to tokamak use. Its mechanical stabil-
ity, high current density, and fast-ramping capabilities make
it suitable for high ramping field experiments or test-beds
where bore sizes above ~200 mm and high current densit-
ies are desired. An accumulated total of more than 500 m
of PIT VIPER have been made to date with excellent qual-
ity and reproducibility, proving not only the performance of
this new technology but also the manufacturing capabilities
and supply-chain needs for the volumes and scales required
for both SPARC (a demonstration device) and ARC (a fusion
power plant).
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Appendix A. Cable I predictions

The predicted cable /. values shown in table 4 are calculated
by scaling the . (77 K, SF) of each of the tapes in the cable
to the manufacturer-specific data sets, in the J, (B, T, #) space.
See appendix B for further details on tape datasets. The scal-
ing provides a tape J. (B, T, 6) for each of the tapes in the
cable which is then weighed based on the number of tapes,
their thickness, and the length of tape to get the stack I, (B, T,
). This stack I is fed to a model of the PIT VIPER cable using

J. (Afmm?)
600

J. (Afmm?)

Coil shape &
region of interest
Single stack

300

100

Current
filaments

1(A Cable J, Stack /,

Iteration
between current
and field along
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Figure 20. Hierarchical filamentization and process steps for
predicting cable /.. Software developed by Robert Granetz (MIT)
and James Logan (CFES).

a hierarchical filamentization method developed in [88]. At the
highest level, the cable/magnet is represented by a single line
of current at the cable’s axis obeying the Biot—savart law to
obtain the field gradient at the macro scale. Then, at the meso
scale (several cable twist pitches), the HT'S tape stacks are rep-
resented by a few lines of current also obeying Biot—savart and
following the stack’s axis. The stacks are assumed to be insu-
lated from one another. At the micro level, for the length of
one or two twist pitches, one of the HTS tape stacks is repres-
ented by a mesh of dozens of filaments limited by the stack /.
(B, T, 6). Using this hierarchy of currents, a magnetic field is
quickly solved for a given current. This field is then compared
to the stack 1. (B, T, €) curves and is increased iteratively until
the lowest point in the B, T, # space of the fine mesh reaches
1. This current value is chosen as the cable /.. This process is
illustrated in figure 20.

Appendix B. Tape datasets

The manufacturer-specific data sets were built by averaging
and symmetrizing high-fidelity 7. (B, T, §) measurements on
dozens of reels from the same manufacturer. The /. (77 K, SF)
of each of the reels in a cable are taken on full-width tapes with
10 mm voltage tap separation, and low-temperature angular
measurements were taken on 0.4 mm wide bridged samples
with 5 mm voltage tap separation on a Supercurrent meas-
urement system manufactured by HTS-110 and Robinson
Research Institute [89]. I, of these single tapes was defined
at an electric field criterion of 1 ©V cm™'. The data pro-
cessing includes a symmetrization step which averages the
measured data points equidistant from 90°, which is defined
where Blltape-plane, and applied to both sides [90].
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Figure 21. Multiphysics models of a (a) four-petal cable and a (b)
five-petal cable subjected to external strains of —0.6%
longitudinally and —0.4% transversly. The stresses in the HTS of (c)
the four-petal cable and a (d) the five-petal cable show similar
magnitude at the extremes and average values that vary only by 7%.

Appendix C. PIT VIPER mechanical models

Due to the monolithic nature of PIT VIPER, it was initially
assumed that the number of petals plays a minor role in
the strains observed in the REBCO tapes—i.e. each petal is
mechanically independent, and forces are kept within it. This
assumption has proven reliable under single-stack IxB loading
at SULTAN (as shown in sections 4 and 7 as well as experi-
ments on VIPER conductors [13]). Multiphysics models were
validated through these experiments, and these models were
further expanded to external loads such as those observed in
SPARC CS. Figure 21 shows Multiphysics models of a five-
petal and a four-petal cable subjected to external strains of
—0.6% longitudinally and —0.4% transversly, with the third
axis (side faces) unbound. The results show stresses generated
in the HTS of similar magnitude and distribution, with an aver-
age difference of only 7%. This is largely owed to the mono-
lithic nature of PIT VIPER provided by the solder VPI process
supported by the copper former and the stainless steel jacket.
Other experiments have shown that even jacket yielding still
does not seem to irreversibly affect the HTS performance in
the conductor [45].
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